
1

White Paper:

 Proposing an Abstracted Interface and
 Protocol for Computer Systems
David R. Resnick, Sandia National Laboratories 1

Michael Ignatowski, AMD Research

Version	1.0	 July	7,2014

Motivation for a New Protocol

While	it	made	sense	for	historical	reasons	to	develop	different	interfaces	and	protocols	for	memory	
channels,	CPU	to	CPU	interactions,	and	I/O	devices,	ongoing	developments	in	the	computer	industry	
are	leading	to	more	converged	requirements	and	physical	implementations	for	these	interconnects.		
As	it	becomes	increasingly	common	for	advanced	components	to	contain	a	variety	of	computational	
devices	 as	 well	 as	 memory,	 the	 distinction	 between	 processors,	 memory,	 accelerators,	 and	 I/O	
devices	becomes increasingly	blurred.	As	 a	 result,	 the	 interface	 requirements	 among	 such	compo-
nents	are	converging.

There	is	also	a	wide	range	of	new	disruptive	technologies	that	will	 impact	the	computer	market	 in	
the	coming	years,	 including	3D	integration	and	emerging	NVRAM	memory. Optimal exploitation	of	
these	technologies cannot	be	done	with	the	existing	memory,	storage,	and	I/O interface	standards.	

The	computer	industry	has	historically	made	major	advances	when	industry	players	have	been	able	
to	add	 innovation	behind	a	standard	 interface.	 The	standard	 interface	provides a	 large	market	 for	
their	 products	 and	 enables relatively	 quick	 and	 widespread	 adoption.	 To	 enable	 a	 new	 wave	 of	
innovation	 in	 the	 form	 of	 advanced	memory	 products	 and	 accelerators,	we	 need	 a	 new	 standard	
interface	explicitly	designed to	provide	both	the	performance	and	flexibility	to	support	new	 system	
integration solutions.

What a New Protocol Should Support

A	single	converged	interconnect	may	well	support	the	following:

 Serve	as	a	memory	interface	for	a	wide	variety	of	emerging	memory	technologies	with	
varying	timing	requirements	and	functions.		

 Enable	intelligent	memory	operations	(Processing-in-Memory)	ranging	from	simple	
functions	like	atomic	operations	to	more	general	processing	capabilities.

																																																																			
1 Sandia National Laboratories is a multi-program laboratory managed and operated

by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy?s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

SAND2014-15795R

2

 Serve	as	a	standard	interconnect	between	processor	chips,	between	processors	and	
accelerators,	or	between	processors	and	reconfigurable	computing	elements.	

 Serve	as	a	standard	interconnect	between	processors	and	intelligent	I/O	devices.		

 Support	a	reasonably	general	ability	to	interconnect	a	modest	number	of	components	in	a	
local	network	to	provide	significant	configuration	flexibility.

 Support	emerging	programming	models,	and	application	development	environments,	such	
as	HSA	(Heterogeneous	Systems	Architecture).

 Support standard	approaches	to	power	monitoring	and	management.

 Support standard approaches	to	error	detection	and	handling,	including	built-in-self-test
and	self-repair.

 A layered	protocol	with potentially one	or	more physical	layer	definitions,	a	data	link/packet
layer,	a	routing	layer,	and	a	protocol/command layer.

There	are	some	clear	overlaps	between	the	above	requirements.		

The	capabilities	mentioned	above	are	expected	to	have	tremendous	impact	on	high-end	systems,	but	
will	have	beneficial	impacts	on	systems	at	all	levels,	even	a	single	CPU	chip	that	has	only	a	single	3D	
DRAM	and	a	single	non-volatile	memory	part.

What the New Protocol Should Not Attempt To Do

 Be	a	totally	universal	interface including	interfaces	to	memory. There	will	continue	to	be	
separate	low-cost	low-function	interfaces	that	will	be	cost	effective	for	many	uses. There	will	
be	interfaces,	like	InfiniBand, that	serve	very	well.	At	the	same	time,	it	is	also	proposed	that	
the	abstract	protocol	be	defined to	enable	support	of	at	least a	few	existing	interfaces	by	
enabling	multiple	data	formats	and	protocols	to	be	carried	within	the	implementation	of	this	
protocol.	

 Define	the	low	level	physical	interface	and	signaling	requirements.		That	is	a	separate	
exercise. At	the	same	time,	the	protocol	must	keep	in	mind	the	ranges,	limits,	and	’druthers	
of	possible	physical	instantiations.	

Motivations for Processor and Component Companies

A	wide	variety	of	emerging	memory	technologies	will	be	introduced	the	coming	years,	each	with	its	
own	 unique	 timing	 requirements,	 interfaces,	 protocols,	 etc. Supporting	 a	wide	 variety	 of	memory	
standards	 in	 a	 rapidly	 changing	 memory	 market	 is	 impractical	 with	 multi-year	 processor	 chip	
development	 cycles.	 In	 order	 to	 exploit	 emerging	 memory	 technologies,	 the	 industry	 must	 move	
away	from	interfaces,	e.g., DDR3,	that	are	highly	tuned	to specific	parameters	of	any	one	technology
and	one	implementation	of	that	technology.		

There	 are	 wide	 ranges of	 bandwidths	 and	 similar	 parameters	 that	 must	 be	 accommodated	 in	
different	 system	 implementations,	 but	 that	 does	 not	 mean	 that	 the	 number	 of	 options	 in	
implementations	should	be	nearly	infinite.	A	single	high-level	interface	protocol	can	be	designed	that
covers	most	all	interface	requirements	for	bandwidths,	limits	on	pins	or	packages,	etc.	with	a	limited	
number	 of	 options,	 but	 implemented	 in	 a	 manner	 that	 the	 same	 commands,	 data	 formats,	 error	
detection/correction	 options	 (etc.)	 can	 be	 supported	 within	 the	 protocol	 standard.	 With	 this	
standard	 interface,	 a	 great	 deal	 of	 design	 complexity	 can	 be	 eliminated	 and	 things	 like	 error	
detection/correction	 can	 be	 the	 same	 no	 matter	 if	 the	 interface	 is	 driving	 a	 set	 of	 DRAMs	 or	
connecting	two	CPU	chips.	And	a	standard	can	be	developed	such	that	error	detection	and	recovery
can	be	the	same	even	if	some	of	the	implementation	specifics	are	different	like	a	different	order	or	
the	presence/absence	of	fields	in	a	communication	packet.

3

Development	costs	would	be	significantly	reduced	if	a	single	physical	interface	(PHY)	standard	that	
allows	for	a	limited	number	of	options	for	data	widths	and	rates,	but	that	covers	a	fairly	wide	range	
of	 such	 parameters.	 Low,	mid,	 and	 high	 speed	 physical	 interfaces	 (PHYs) could	 be	 agreed	 on	 for	
interconnecting	multiple	different	types	of	components while	keeping	the	same	packet	formats	and	
protocols including	 the	 same	 basic	 commands.	 This	 would	 also	 enable	 greater	 flexibility	 in	 the	
configurations	 supported	by	 processor	 chips	 if	 the	 chip	 I/O	PHYs	 could	 be	more	 general	 purpose	
instead	of	being	designated	as	memory	PHYs,	I/O	device	PHYs,	and	processor-to-processor	PHYs.	

Component	manufacturers	would	like	to	provide	value-added	innovation	under	a	widely	supported	
standard.	 Such	 a	 standard	 would	 have	 to	 be	 flexible	 enough	 to	 support	 intelligent	 devices	 with	
suitable	programming	models.	

In	order	to	support	a	wide	variety	of	intelligent	components,	hardware	support	that	would	enable	a	
standard	 programming	 model	 would	 greatly	 simplify	 an	 otherwise	 difficult	 and	 chaotic	 software	
ecosystem.	HSA	(Heterogeneous	System	Architecture)	is	a	widely	supported	emerging	open	standard	
programming	 model	 that	 could	 possibly	 serve	 as the	 base	 for	 such	 a	 standard.	 It	 defines	 a	
programming	model	both	in	terms	of	how	memory	is	shared,	and	how	different	compute	elements	
interact.

Impact of 3D Memory Stacking

With	3D	packaging	technology	coming	on	board,	as	seen	in	Micron’s	Hybrid	Memory	Cubes	(HMC)	
and	 in	High	Bandwidth	Memory	 (HBM,	 a	 JEDEC	DRAM	standard), along	with	 no	 effort	 to	create	 a	
DDR5	standard,	the	memory	system	and	memory	components	will	undergo	great	changes.	The	stack	
concept	allows	much	higher	chip	densities,	lower	power	and	the	ability	to	put	new	functionality	into	
new	components.	This	offers	the	opportunity to	upgrade	memory	(and	hopefully	other	interfaces)	as	
part	 of	 the	 inevitable	 changes	 in	 system	 implementations while	 keeping	 the	 same	 interface	 and	
protocol	because	they	are	designed	to	be	upgradable.

One	 option	 to	 take	 advantage	 of	 new	 capabilities	 is	 to put	 additional	 logic	 functions	 in	 the	 new	
components	such	that	the	resultant	system	runs	much	more	efficiently,	while	supporting	growth	into	
the	 future,	 along	 with	 a	 new	 level	 of	 flexibility	 in	 architecture,	 design,	 implementation	 and	
upgradability	of	components.	We	have	the	potential	to	design	a	new	generation	of	intelligent compo-
nents	 that	 enable	 development of a	 wider	 range	 of	 systems	 with	 reduced	 complexity in	 system
integration,	use,	and	support.

Intelligent Memory Components

High-end	computer	systems	keep	growing	in	size,	complexity,	and	power	usage.	

At	 the	 same	 time,	 the	 average	 activity	 level	 in	 CPU	 chips	 is	 not	 very	 high.	 This	 is	 due	 to	multiple	
causes,	most	all	of	which	relate	to	latency.	A	considerable	portion	is	due	to	data	movement but	is	also	
the	result	of	things	like poor	cache	use, data	access	times, and	communication	overhead	and	interac-
tion delays.	Rather	 than	waiting	 for	memory	 to	 return	data	 that	a	CPU	can	 then	use,	an	 intelligent	
memory	system	could	operate	on	 the	data to	achieve	 the	wanted	result,	or	manipulate the	data	 to
make	the	CPU’s	data	use	more	efficient,	e.g.,	by rearranging	data	so	that	CPU caches	see	increased	hit	
rates.

A	major	way	 to	 both	 increase	 performance	 and	 reduce	 energy	 is	 to	 reduce	 data	movement.	 If	 an	
operation	can	be	done	directly	in	the	memory	system	rather	than	by	moving	data	to	and	from	CPUs,	
then	system	performance	will	increase	and	energy	usage	goes	down	at	the	same	time.	What	happens	
to	system	power	is	more	complex;	the	memory	power	goes	up	for	the	added	operation(s)	while	the	
power	it	takes	to	interface	between	a	CPU	and	its	memory	is	reduced because	of	eliminated	activity,	
along	with	saved	time	and	effort	in	the	CPU.	System	energy	is	reduced	because	performance	goes	up,	
resulting	in	decreased	run	times and	because	the	total	amount	of	work	is	reduced.

4

Abstracted Interfaces

As	 technologies	 become	more	 complex	 it	 is	 becoming	 increasing	 harder	 to	 integrate	 new	 types	 of	
components	into	systems.	There	is	a	great	need,	particularly	in	HPC,	for	non-volatile	(NV)	memory	to	
become	an	integrated	part	of	memory	systems.	For	such	uses,	a	NAND	chip	should	not	function	as	a	
disk	drive,	rather	it	should	be	sent	read	and write	commands.	And	DRAM,	which	is	the	great	majority	
of	 current	 memory,	 should	 similarly	 get	 read	 and	 write	 commands	 rather	 than	 RAS/Activate,
CAS/Read, Precharge	as	three	commands	with	specific	timing	requiring	moderately	complex	control	
logic	in	the	CPU to	execute	the	needed	timing	while	working	to	maximize	bandwidths.

What	 is	 needed,	 at	 least	 with	 respect	 to	 component	 interfaces,	 is	 to	 abstract	 the	 interface.	 For	
example,	 rather	 than	send	RAS	Bank# row-address/CAS	Read column-address/Precharge Bank# to a	
memory	component with	specific	times	between	the	commands,	send	Read	128	bytes from address B
or	Write	32	bytes	to	address F.	Design	out	 the	need	 to care	about	having	 things	be	exactly	on	 time,	
being	cognizant	of	the	address	map,	and planning	for	support	of	timing	and	other	changes	required	
when	a new	generation	of	 components	are	used	 in	place	of	 the	current	generation.	Send	Read	512
bytes	 from	 address R to	 a	 NAND	 part rather	 than Select	 Head	 P/	 Cylinder	 Q/Read	 sector	 M.
Furthermore,	we	can use	the	same	data	format	and	interchange	protocol	as	if	the	request	was	going	
to	another	CPU	or	to	a	DRAM as	those	components	will	share	a	common	interface	protocol with	the	
NAND.

Would	 like	 to	have	a	NIC	 (network	 interface	chip or	subcomponent)	 that	 could	 receive	a	complex	
command	(say	to	move	multiple	different	memory	blocks	of	different	sizes	from	multiple	sources	to	a	
local	memory	that	is	faster	and	is	closer	to	the	requesting	CPU), and	be	doing	this	while	the	CPU	is	
doing	other	work.	This	means	more	system	concurrency	(so	higher	performance),	lower	energy	and	
higher	efficiency for	the	CPU,	as	the	CPU	generates	the	request to	its	NIC,	does	other	work,	and	then	
processes	the	rearranged	data	more	easily	and	quickly	with	less	effort	and	wait	time.

With	the	concept	of	 interface	abstraction,	we	can	support	new	and	better	ways	to	do	things	within	
computer	 systems	 and	 can	 enable	 new	 generations	 of	 components	 to	 provide	 a	 better	 and	 easier	
path	 to	 system	 design, easier	 software	 development,	 and	 higher	 performance	 with	 less	 total	
hardware	as	each	component	is	working	more	efficiently.

Abstraction	 can	work	 because	 logic	 associated	with	 a	 component takes	 requests, implements	 the	
control	and	functions	needed	to	have its	components execute	the	request, so	that any	requestor	sees	
the	abstracted	interface. Creating	this	capability	 is	not	free,	but	the	benefits	will	be	well	worth	the	
effort.

Benefits of Abstracted Interfaces

A	Read request	 to	a	DRAM	 is	 the	same	as	a	Read to	an NVRAM	part	and	 is	 the	same	as	a	Read to	
another	CPU or	even	to an	I/O	device.	

There	certainly	can	and	will	be	differences	in	the	detailed	contents	of	packets	to	components	of	
very	 different	 purpose	 and	 function.	 The differences	 do	 not	 require	 being	 in	 the	 frames	 of	
packets	and do	not	affect	the	rules	of	the	interface	protocol.	Parameters	that	need	to	be	present	
for	one	component	but	not	another	can	be	included	in	the	‘data’	portion	of	a	packet.	In	addition,	
each	packet	frame	will	have a	field	that	indicates	how	second	level	information	is	placed	in	each	
packet. This	 last	 capability	 means	 that	 most	 components	 should	 be	 able	 to	 receive	 multiple	
varieties	of	packets;	that	can	optimize	communication	efficiency.

Allows	for	vendors	to	optimize	their	own	designs,	including	adding	new	functions,	without	breaking	
existing	uses.

While	a	component	design	does	have	to	add	control	logic	to	a	component,	it	is	also	the	case	that	
the	vendor	can	optimize	a	design	to	best	use	its	own	capabilities	and	therefore save logic	area	or	
create	other	ways	 to	 take	advantage	of	 its	unique	capabilities—as	 long	as	 the	changes	do	not	
break	the	expectations	of	a	basic	component.	A	 ‘Read’	must	still	read,	even	if	there	are	special	
flavors	added or	a	flavor	is	not	indicated.

5

The	abstracted	 interface	supports	asynchrony—can	 ignore	most	 timing issues.	Generate	a	 request	
without	caring	exactly	when	a	reply	will	be	returned.	

This	simplifies	many	interfaces,	though	it	does	mean	that	 logic	 is	added	to	some	components,	
for	 example, to	 provide	 time-out	 detection.	 This	 capability	 also	means	 that	 different	 compo-
nents, that	are	designed	with	the	same	basic	capabilities, can	be	used	and	that	new	generations	
of	components	can	be	designed	and	then	used	in	older	systems,	knowing	that	they	will	function	
correctly and	within	acceptable	limits.	(Of	course	the	power	requirements	of	a	new	component	
could	be	too high,	but	that	is	not	something	that	can	be	addressed	in	this	high	level	overview.)

Memory	 vendors	might	 offer	 parts	with	 different	 latencies—for	 different	 prices—and all	 the	
different	 parts	 are	 interchangeable	 and	 work	 in	 systems	 without	 changing	 anything	 in	 the	
interface,	and	in	configuration	or	timing	parameters.

This	 is	 likely	 the	 easiest	 possible	 example,	 but	 it	 also	 means	 that	 an NV	 part	with	 different	
timing	altogether	can	physically	be	used	in	place	of	a	DRAM,	possibly	with	some	use	caveats.

Supports	an	on-ramp	to new	kinds	of	memory	components	and	new	functions.

As	noted	just	above.

Driver	software	becomes	much	simpler

Most	 of	 the	 complexity	 of	 a	 component	will	 be	 supported within	 the	 component. A	 driver	 is	
reduced	to	things	like	managing	data	buffers and	data	flow,	and error detection	and recovery.
This	will	make	interfaces	easier	to	design	and	support as well	as	increasing system	resilience.

Communication	and	data	movement	becomes	more	efficient.

 The interface	is	simplified.	

 The	protocol	has	a	primary	purpose	to	enable	more	capability	in	components,	e.g., the	ability	
to	transpose	a	matrix	within	the	memory	system	so	that	a	using	CPU	has	high	hit	rates.	
Another	example	is	building	atomic	operations	into	memory;	some	CPU	traffic	is	eliminated	
and	the	function	eliminates	coherency	issues	for	those	operations.

 Errors	can be	detected	and	contained	locally,	simplifying	both	hardware	and	software.	

There	are	other	reasons,	but	the	point	is that	there	are	multiple	worthwhile	benefits.

This	 concept	 for	 intelligent components	 allows	 for	 a	 wide	 variety	 of	 systems	 to	 be more	 easily	
integrated	as	the	interface	and	protocol	remain	consistent. It	allows	new	commands	and	new	system	
functions	 to	 be	 introduced	with	consistent	 rules	 in	 systems	 that	 previously	 did	 not	 support	 those	
new	functions.	Of	course, it	would	then	require	the	addition	of software	to	take	advantage	of	the	new	
capability.

This,	hopefully,	is	clear	from	the	discussion	above.

New	 components	 can	 be	 used	 in	 the	 place	 of	 older	 components	 if	 the	 packaging	 and	 power	
constraints	enable	that.	

The	logic	can	provide	the	capability	for components	to	have	built-in	self	test	(BIST)	that	are	optimum	
for	 each	 component.	 This capability needs	 very	 little	 support	 to	 use	 (at	 least	 if	 used as	 go/no-go	
functionality).

May	well	be	worthwhile	 in	some	components,	 like	3D-stacked	memory	parts,	to	 include	BIST.	
This	test	capability	can	be	optimized	for	each	part	with	none	of	the	differences	visible	outside	
the	part.	This	makes	debugging	easier	and	more	reliable	and	if,	 for	example,	the	part	also	has	
some	 self-repair	 capability	 that	 the	 repair	 operation	was	 done	 successfully,	 with	 little	 effort	
needed	by	the	system	to	do	anything	detailed	or	complex.

Functions	 can	 be	 added	 in	 the	 memory	 system	 that	 make	 it	 more	 capable in	 direct	 support	 of	
application	needs	and	provide	functions	that	increase	system	efficiency	and	performance.	

6

 Atomic	operations,	already	mentioned, to	reduce	coherency	and	communication	overheads

 Moves	(gather/scatter,	shuffles,	matrix	operations	like	transpose,	…)

 Communication	accelerators and	functions	that	reduce	or	replace	current	CPU	functions	like	
providing	data	base	and	search	functionality directly	in	the	memory	system.

 Some	CPU-like functionality to	test	data	and	do	different	operations	as	a	result,	but	within	
the	memory	system.

All	of	the	indicated	operations	mean	that	additional	functions	are	built	into	the	memory	system	
and	that	the	interface	and	protocol	must	be	able to	support	the	added	functionality.	

Again,	 the	 idea	 is	 to	 enable	 the	 memory	 system	 to	 do	 things	 concurrently with	 other	 system	
operations	and	to	reduce	the	total	system	energy	at	the	same	time	that	system	performance	is	being	
upgraded. And	 to	 do	 that	 in	 a	 consistent	way	 so	 that	 old	 and	 new	 functions	 can	 coexist	 and	 that	
things	are	defined	so	that	the	path	for	future	growth	is	considered	up	front,	not	patched	on.

Functions	can	be	put	 into network	interfaces	and	directly	in	the	system	network	that	provide	new	
functionality	and	enable	increased	reliability	and	system	resilience. An	example	is	to	communicate	
alternate	paths	and	recovery	steps	to	take	on	network	errors	and	failures.	A	network	structure	could	
determine	its	environment	at	startup	or	after	a	failure,	use	the	returned	information	to	reconfigure	
itself,	 and	 then	 send	 status	 including	 the	 failure	 and	 the	 recovered	 capability. And	 this	 could	 be	
different	each	time	the	network	structure	is	powered	up.

There	 can	 be	 new	 and	 additional	 error	 detection	 and	 error	 recovery	 capabilities	 built	 into	
components	and	into	how	a	system	is	used.	The	high level	of	interaction	allows	components	to	have	
the	 capability	 to	 do	 self-repair	 without	 affecting	 ongoing	 traffic,	 for	 example.	 Different	 kinds	 of	
memory	components	 (DRAM	and	NV	 flash,	 for	example)	can	detect	and	repair	 themselves	 in	very	
different	ways,	all	without	complex	software	support	 in	 the	 interface	or	channel	driver.	 [Of	course	
any	 error	 should	 be	 reported	 in	 some	 fashion	 so	 that	maintenance can	 be	 done	 if	 indicated	 and	
maintenance	protocols	followed.]		

Abstraction	 can	 allow	 flexibility	 in	 configuration	 and	 system	 structure	 past	 that	 envisioned	 by	
current	channels.	An	example	might	be	to	allow	components	to	chain	together	such	that	a	memory	
channel	can	have	anywhere	from	a	single	memory	part	to	dozens	or	more	with	a	single	connector	
without	 changes	 needed	 in	 the	 interface	 software.	 Reasonable	 latency	 differences because	 of	 the	
chain	 structure	 are	 automatically	 tolerated,	 as	 the	 protocol	 is	 latency	 independent and	 the	
abstraction	allows	address	bits	to	be	used	differently	in	different	circumstances.	

We	are	not claiming	that	it	is	easy	to	develop the	envisioned	capability.	While	the	benefits	are	very	
large,	there	are	also	component	and	development	costs	and	status-quo	component	business	interests	
to	be	considered.

Drawbacks of Abstracted Interfaces

There	may be	a	loss	in	performance	in	some	cases. Today	a	processor	or	GPU	memory	controller	can	
be	 highly	 tuned	 to	 achieve	maximum	performance	with a	 specific	DRAM	 standard. Processor	 and	
GPU	 companies	 have	 invested	 in	 considerable	 IP	 to	 optimize	 the	 order	 of	 memory	 requests	 for	
maximum	performance.	The	optimizations	possible	within	a	memory	module	are	unlikely	 to	be	as	
robust	as	those	within	a	high	performance memory	controller	on	a	processor	or	GPU. However, it’s	
not	clear	how	big	this	impact	is	for	most	cases.	Both	Micron	HMC and	JEDEC	HBM	parts	have	greatly	
increased	 parallelism	with	 respect	 to	 current	memory	 implementations.	 They	 have	more	 internal	
banks	 and	 a	 greater	 number	 of	 memory	 links	 that	 reduce the	 need	 for	 highly	 optimized DRAM	
controllers. Further,	 such	memory	controller	designs	 tend	 to	be	highly	optimized	only	 for	a	 rather	
limited	 set	 of	 memory	 options	 compared	 to	 the	 much	 broader	 range	 of	 memory technologies	
supported	by	this	new	proposed	standard.

Interface	timing	is	not	fixed.	This	has	both	upsides	and	downsides.	A	downside	is	that	each	requestor	
may	 need	 to	 buffer	 additional	 data.	 A	 wider	 range	 of	 latency	 can	 complicate	 some	 application	

7

optimization.	On	the	other	hand,	each	vendor	of	a	component	can	make	a	somewhat	different	version	
and	not	need	 to	provide	all	 the	 low	 level	details; the	CPU	or	other	component	 that	 interfaces	 to	a	
component	does	not	need	to	support	the	detail	and	thus	is	simpler	in	the	interface	logic	and	generally	
in	the	software	that	generates	or	uses	the	data	that	passes	between	the	components.

Where	there	are	multiple	requestors	of	a	component	(even	multiple	cores	in	a	single	CPU	chip),	the	
response	order	is	not	automatically	fixed	per	the	order	of	requests. If	this	is	an	issue	there	could	be	
parameters	that place	limits	on	ordering	or	other	mechanisms. It	is	also	true	that	increasing	parallel-
ism	brings	up	the	issue	independently	of	each	particular	interface	and	its	capabilities.

A	component	with	new	capabilities	needs upgraded	software if	the	new	functions	are	used,	though	
the	previous	functionality	may	still	work	with	the	older	software. The	software	might	be	a	new	or	
revised	 library,	 or	 might	 mean	 that	 the	 application	 needs	 some	 refactoring,	 along	 a	 range	 of	
possibilities.	This	might	mean	that	new	functionality	is	added	gradually or	possibly	not	at	all;	but	in	
any	case	backward	compatibility	should	be	preserved.	(And	yes	there	are	end-cases	here.	If	a	change	
in	 a	 component	 does	 something	 like	 return	 a	 result	 earlier	 than	 a	 previous	 component,	 then	 this	
could	expose	a	software	bug	that	was	not	seen	before,	for	example.)

Expect	that	the	ability	to	do	power	reduction	things	like	power	down	a	link	and	then	power	it	back	
up may	possibly	cause	use	issues.	Different	channels	and	an	interface	that	could	be	either	electrical	
or	optical	(at	least	as	seen	by	apps	and	the	OS)	will	have	different	times	to	power	up	and	down	and	to	
do	characterization	and	training	for	the	different	implementations. The	upside	is	that	such	changes	
should	not	affect	general	operation	and	that if	there	are	such	effects	this	can	be	handled	in	multiple	
ways.	

Components	 that	have	been	 ‘dumb’	 to	 this	point,	 like	DRAM,	will	be	more	complex	and	somewhat	
higher	 in	 cost.	 The	 other	 side	 of	 this	 is	 that	 cost	 is	 taken	 from	 other	 areas	 (including	 things	 like	
software	drivers and	logic	interfacing	the	external	components,	in	addition	to	an	expected	reduction	
in	the	total	hardware	in	a	system	because	of	increased	system	efficiency) and	system	performance	is	
increased	in	multiple	ways	at	the	same	time	that	system	energy	costs	are	reduced.

A Packetized Approach

None	of	what	is	below	is	cast	in	stone.	These	are	simply	preliminary	thoughts.

The	main	idea	is	to	establish	a	high	level	protocol	built	around	packets,	how	information	is	passed	in	
the	 packets,	 error	 handing,	 etc.,	 such	 that	 most	 any	 component	 can	 interact	 with	 any	 other	
component	as	long	as	the	two	components	understand,	at	least	to	some	level,	what	each	side	can	ask	
of	the	other	side.	Components,	very	likely,	should	be	able	to	return	a	type	and	variation	code	and/or	
an	 abbreviated	 list	 of	 their	 capabilities.	 Most	 all	 information	 and	 data	 that	 moves	 between	
components,	for	example	between	a	CPU	and	a	memory	part	is	packetized.	

As	envisioned,	this	means	that	each	memory	part	has	the	capability	to	interact	with	other	parts	of	a	
computer	 system if	 those parts	 have logic	 to	 support	 that	 interaction.	 Thus	a	 request	 from	a	 CPU	
might	go	to	an	initial	memory	part	that	then	passes	the	request	to	another	memory	part	if	the	first	
does	not	have	the	needed	data.	The	reduction	in	total	effort is	considerable:

Multiple	 requests	 into	 the	 memory	 system,	 data	 back	 and	 forth	 to	 the	 CPU a	 couple	 of	
times,	code	running	in	the	CPU	to	test	each	reference	attempt	

is	replaced	with:

CPU	request	to	first	part,	direct	request	from	the	first	to a	second part, reply	to	the	CPU

as	the	CPU will	not	have	to	serve	as	the	focal	point.	Energy	is	reduced	and	time	is	saved.

Packets	will have	function	variations,	but	all will	be	variable	in	length.	Would	envision	the	variations	
would	be	 to	support	different	 numbers	and	sizes	of	 control	parameters for	component	operations	
with little to	no	impact	on	packet	framing	and	no	impact	on	the	interface	protocol.	

8

At	 system	 startup	 a	 component	 can	 be	 asked	 for	 its	 capabilities,	 starting	with	 something	 like	 the	
number	of	lanes	in	the	link	and	the	data	rate	for	highest	bandwidths.	The	capability	can	also	serve	to	
lower	the	interface	capability	to	reduce	power	or	as	part	of	error	recovery.

The	interfaces	initialize	in	a	minimum	mode	(like	one	lane	and	lowest	data	rate)	that	is	then	used	to	
establish	 the	 running	 parameters	 on	 each	 side.	 So	 if	 the	 interface	 is	 8	 lanes	wide	 and	 supports	 a	
higher	data	rate	than	the	base	rate,	the	startup	establishes	that	and	switches	quickly. All	 interfaces	
are	also	envisioned	to	be	full	duplex	as	it	is	expected	that	each	side	of	a	link	can	originate	messages	
and	requests.	

The	protocol	will	 have	 resiliency	 features,	 likely	 including	CRC	with	 variable	 retry or	multiple-bit	
ECC.	(Very	much	favor	using	CRC	w/auto-retry	though	there	are	tradeoffs.)	Expect	the	protocol	to	be	
optimized	 in	 support	 of	 local	 error	 recovery	 to	 reduce failure	 cascades. Could	 envision a	 protocol	
with	optional	multiple	levels.

Support	of	a	packet	variation	might	be	such	 that	a	 ‘full’	 format	 that	has	wide	 fields	 for	 things	 like	
system	addresses	is	used	to	establish a	set	of	baseline	address	ranges	and	then	a	packet	format	that	
has	a	tag	and	set	of	offsets	from	the	address	bases	is	used	in	place	of	the	original	packet	variation.	
This	can	reduce	packet	overhead	and	make	communication	more	efficient.

Other	ideas	that	can	further	increase	the	capabilities	and	efficiencies	should	easily	be	possible.

Once	the	basic	protocol	features	are	defined,	then	we	will	likely	define	a	set	of	hardware	implementa-
tions	that	all	support	the	protocol,	but	with	different	bandwidths	and/or data	rates.	

Would	 like	 to	 aim	 at	 an	 interface	 definition	 that	 supports	 multiple	 lane	 widths	 for	 electrical	
implementations	and	also	optical	 interfaces.	Would	hope	 for	something	 like	 three	or	 four	different	
data	rates	(with	room	for	faster	rates	in	the	future),	so	that,	for	example,	both	single-sided	lower	rate	
and	differential	higher	rates would	be	supported. Would	also	expect	that	there	will	be	a	least	a	few	
different	channel	widths,	in	support	of	different	bandwidths,	packaging	options,	and	power	levels.	

Would	 expect	 to	 drive	 to	 a	 definition	 that	 allows	 any	 component	 that	 supports	 the	 protocol	 to	
interact	with	 any	 other	 component	 that	 supports	 the	 protocol with	 at	 least	 the	 basic	 capabilities	
defined	 in	 the	 protocol,	 though	 probably	 not	 at	 the	 maximum	 bandwidth	 supported	 by	 one	
component	or	the	other.

Given	that	components	that	support	this	 interface	and	protocol	are	expected	to	be	fairly	 intelligent	
(or	at	 least	 capable	of	being	 intelligent)	 there	 likely	 should	be	 direct	 support	 for	 sending	multiple	
parameters	 and	 possibly	 even	 lists	 of	 commands	 between	 components.	 An	 example	 of	 this	 is	 a	
memory	part	 that	 sees	 that	 it	 does	 not	 have	 the	 data	 requested,	 forwards	 the	 request	 to	 another	
memory	part,	while	indicating	that	the	result	of	the	request	be	returned	to	the	original	requestor.	

Would	 hope	 that	 the	 protocol	 is	 defined	 such	 that	 some	of	 commands	 that	 are	 sent	 in	 the	 packet	
frame	indicate	that	the	actual	commands are	contained	in	the	data	portion	of	the	packet.	This	enables	
for	commands	and	the	packet	structure	to	be	more	general	than	the	limited	set	of	functions	that	are	
contained	in	packet	frames.	It	also	enables	things	like	different	levels	of	error	checking	and	failure	
recovery	 to	be	done	 if	 the	extended	capability	 is	provided	by	 the	communication	components	and	
also	for	new	functions	to	be	included	in	upgrades	and	over	time.

Contrasting an Abstracted Interface and Protocol with Some Existing Interfaces

Some	existing	interfaces	are	described	below	for	comparison.	It	is	possible	that	the	new	interface	will	
directly	 support	 coherent	 operations,	 unlike	 PCIe	 and	 InfiniBand. Only	 simple software	 drivers
should	be	needed. Like most	protocols,	it	will	be	a	layered	protocol	with	one	or	more physical	layer	
definitions,	a	data	link	layer,	and	a	transaction	layer.	The physical	layer	definition	hopefully	supports
very	 energy	 efficient	 operations	 for	 short	 links,	 and	 expands	 to	 include	 definitions that	 support
longer link	distances,	possibly	of	distances	of	around	10	meters	(obviously	details	TBD).	The	latency	
tolerance	of	the abstract	interface	helps	here.

9

Some Existing Interfaces for Comparison

QPI:

QPI	(Intel	QuickPath	Interconnect)	is	a	device	interconnect	developed	by	Intel	as	a	replacement	for
its	Front-Side	Bus	(FSB). QPI can	be	used	to	interconnect	between	the	processor	and to	an	IO	hub	or	
network	 hubs.	 It	 supports	 20	 lanes	 in	 each	 direction	 at	 data	 rates	 up	 to	 8	 GHz	 (4	 GHz	with	 two	
transfers	per	clock	cycle).	Versions are	also	used	on-chip	to	communicate	between	the	cores	and	the	
“uncore”	components.

The	bus	operates	on	an	80	bit	 flit,	and	includes physical,	 link,	routing,	protocol	 layers.	QPI	dynami-
cally	degrades	when	hard	failures	occur.	

QPI	is	a	proprietary standard	defined	by	Intel.	

HyperTransport:

HyperTransport	(HT)	is	a	device	interconnect	developed	by	AMD.	It	supports	bus	widths	from	2	to	
32b,	is	full	duplex	at	speeds	up	to	3.2	GHz	with	two data	transfers	per	clock	cycle.		

HT	is	packet	based,	and	can	also	be	used	in	a	router	network.	

The	HyperTransport	standard	is	controlled	by	the	HyperTransport	Consortium.	AMD	uses	proprie-
tary extensions	called	Coherent	HyperTransport	to	interconnect	processor	chips.	

PCIe

PCIe	(also	known	as	PCI	Express,	or	Peripheral	Component	Interconnect	Express)	 is	a	widely	used	
standard	 interconnect	 for	 I/O	 devices.	 It	 falls	 in	 the	middle	 between	 a	 device	 interconnect	 and	 a	
routed	network	bus.	

PCIe	is	hot	pluggable,	and	supports	auto-configure	(sometimes	including	ROM	device	drivers).	The	
common	 PCI-requests	 include:	 configuration	 read/write,	 I/O	 read/write,	 memory	 read/write,	
and interrupts. PCIe	supports	reliable	delivery	of	packets	with	retry	(CRC	&	acknowledgements).

PCIe	 supports	 1	 to	 32	 duplex	 lanes,	 which can	 be	 dynamically	 downsized.	 The	 current	 PCIe	 3.0	
standard	supports	speeds	up	to	8.0	Gtransfers/s.	The	spec	for	PCIe	4.0	is	expected	in	2014 – 15	and	
will	support	speeds	of	16GT/s.	

PCIe	is	a layered	protocol,	consisting	of	a transaction	layer,	a data	link	layer,	and	a physical	layer.	

PCIe	is	an	open	standard	defined	by	the	PCI-SIG (Peripheral	Component	Interconnect	Special	Interest	
Group),	an	industry	consortium	with	over	800	members.	

PCI-SIG	 I/O	 Virtualization	 (IOV)	 Specifications	 allow	 multiple	 operating	 systems	 running	
simultaneously	within	a	 single	computer	 to	natively	 share	PCIe	devices.	 	 SR-IOV	(Single	Root	 IOV)	
provides	 native	 I/O	 Virtualization	 in	 existing	 PCI	 Express	 topologies	where	 there	 is	 a	 single	 root	
complex.	 MR-IOV	 (Multi-Root	 IOV)	 builds	 on	 the	 SR-IOV	 specification	 to	 provide	 native	 I/O	
Virtualization	in	new	topologies	(such	as	blade	servers)	where	multiple	root	complexes	share	a	PCI	
Express	hierarchy.

IBM	 has	 developed	 proprietary CAPI	 (Coherent	 Accelerator	 Processor	 Interface)	 extensions to	
encapsulate	coherent	operations	over	PCIe	3.0	links.		

InfiniBand

InfiniBand	is	a	scalable	routed	network	bus. It	supports	Quality	of	Service,	failover,	virtual	channels,	
remote	DMA,	variable	sized	messages,	 channel	 send	and	receive,	multicast,	and	atomic	operations.		
Communication	is	controlled	by	APIs	supporting	basic	verbs. InfiniBand	supports	the	following full	
duplex lane	widths:	1x,	4x,	12x. The	lane	speeds	are:	FDR=	13Gb/s,	EDR	=	25Gb/s,	and	HDF	=	50Gb/s	
(2017).		

10

The	InfiniBand	standard	is	controlled	by	the	InfiniBand	Trade	Association	industry	consortium.	

NVLink

NVIDIA	has	recently	(March	2014)	announced	a	proprietary	alternative	to	PCIe	for	providing	higher	
speed	interconnection between	GPUs	and	processors.	Link	lengths	are	restricted	compared	to	PCIe,	
allowing	 for	more	 power	 efficient	 implementations.	 Detailed	 specifications	 are	 not	 known	 at	 this	
time,	 but	 initial	 products	 are	 expected	 in	 2016.	 IBM	 is	 expected	 to	 support	 NVLink	 in	 its	 next	
generation	of	Power	processor	chips.	

11

Summary Table:

DDR4 HMC 1.0 HBM 1.0 QPI HT	3.1 PCIe	4.0 IB

Data Lane Rate 8.5	Gb/s 15	Gb/s 1Gb/s 9.6 Gb/s 6.4	Gb/s 16	Gb/s
50	Gb/s	
(HDR)

Data	Width	 64b 16b	x2x4 128b	x8 16b x2 2b-32b x2 1b-32b	x2 12b	x2

Maximum	Bandwidth 68	GB/s 240	GB/s 128	GB/s 38	GB/s 51	GB/s 128	GB/s 150	GB/s

Multi-hop	Routing No Yes No Yes Yes No Yes

Error Detection
ECC	

optional
Internal	ECC	
Packet	CRC

ECC	
optional

Packet	
CRC

Packet	
CRC

Packet	
CRC

Packet	
CRC

Error	Recovery
ECC	

optional
retry

ECC	
optional

retry retry retry retry

Support	for	Coherency	 No No No Yes No
Yes	cHT*

No No

* Coherent	HT (cHT) – and	AMD	proprietary extension

Please	 ask	 questions	 of	 and	 return	 comments	 to	 Dave	 Resnick	 of	 Sandia	National	 Labs	 and	Mike	
Ignatowski	of	AMD:

drresni@sandia.gov
Mike.Ignatowski@amd.com

mailto:drresni@sandia.gov

